

Capteurs inertiels atomiques de très haute précision

Franck Pereira dos Santos

SYRTE

Workshop «Atomes Froids et Applications Embarquées»

Toulouse, 09/12/2015

https://syrte.obspm.fr/spip/science/iaci/

Contenu de cette présentation

1. Motivations, Applications

2. Principe de l'interférométrie atomique et des capteurs

inertiels à atomes froids

3. Quelques expériences d'interférométrie atomique au

SYRTE et ailleurs

4. Nouvelles géométries et Perspectives

Applications des capteurs inertiels

Senseur inertiel = capteur mesurant les accélérations ou les rotations d'un objet

Navigation inertielle

- accéléromètres et gyromètres embarqués
- \rightarrow avions, satellites, sous-marins, ...

piais ~
$$10^{-5} m.s^{-2}$$

dérive en position ~ 100 m après une heure de vol

Applications des capteurs inertiels

Navigation inertielle

- accéléromètres et gyromètres embarqués
- → avions, satellites, sous-marins, ...

dérive en position ~ 100 m après une heure de vol

biais $\sim 10^{-5} m.s^{-2}$

Géophysique

- étude du sous-sol (hydrocarbures)
- campagnes de prospection aéroportées
- \rightarrow précision ~ 1 μ g
- détermination du géoïde (océanographie)

ESA/GOCE, 2011 sensibilité: 10⁻¹² m.s⁻²

Applications des capteurs inertiels

Géophysique

- campagnes de prospection aéroportées
- détermination du géoïde (océanographie)

ESA/GOCE, 2011 sensibilité: 10⁻¹² m.s⁻²

Physique fondamentale

- test du principe d'equivalence
- mesure de G
- détection d'ondes gravitationnelles

Mesure d'élongation relative $h \sim 10^{-22}$ (à 10 Hz par exemple)

Utiliser un atome en chute libre pour lire la phase d'un laser lié au référentiel accéléré
→ mesure de la distance parcourue en unité de la longueur d'onde

Ordres de grandeur

Contenu de cette présentation

- 1. Motivations, Applications
- 2. Principe de l'interférométrie atomique et des capteurs

inertiels à atomes froids

3. Quelques expériences d'interférométrie atomique au

SYRTE et ailleurs

4. Nouvelles géométries et Perspectives

Principe de l'interféromètre atomique

- Analogie avec un interféromètre optique
- Utilisation de l'interaction laser-atome pour défléchir les ondes de matière

Transitions Raman stimulées

Transfert d'impulsion (~1 cm/s)

$$k_{\text{eff}} = k_1 + k_2$$

 $|e, \vec{p} + \hbar \vec{k}_{\text{eff}}\rangle$
 \vec{k}_{2}, ω_2
 $\hbar \vec{k}_{\text{eff}}$
 $|f, \vec{p}\rangle$
 \vec{k}_{1}, ω_1

Impression de la différence de phase des lasers:

$$arphi = \phi_1 - \phi_2 = ec{\mathrm{k}}_{\mathrm{eff}} \cdot ec{r}(t)$$

$$+ \varphi \Big| \stackrel{|e, p + \hbar \vec{k}_{eff}}{|f, \vec{p}\rangle} - \varphi \Big|$$

Oscillations de Rabi

Différence de phase entre les 2 ondes

Échantillonnage de la position classique de l'atome à trois instants sucessifs

Mesure de la différence de phase

Contraste de l'interféromètre limité par:

- étalement transverse du nuage dans le faisceau Raman durant l'interrogation
- sélectivité en vitesse des transitions Raman (effet Doppler)

 $2T \sim 20 \text{ ms} - 0.5 \text{ s}$ atomes froids $\sim 1 \text{ cm/s}$ (température $\sim \mu \text{K}$) $2T \sim 10 \text{ s}$

atomes ultra-froids

 $v_{at} \sim 1 \text{ mm/s}$ (température ~ 10 nK)

Séquence expérimentale type

atomes en chute libre

Contenu de cette présentation

- 1. Motivations, Applications
- 2. Principe de l'interférométrie atomique et des capteurs

inertiels à atomes froids

3. Quelques expériences d'interférométrie atomique au

SYRTE et ailleurs

4. Nouvelles géométries et Perspectives

Gravimètre à atomes froids (2003 \rightarrow)

Gravimètre à atomes froids (2003 \rightarrow)

Notre record de sensibilité

5.7 μ Gal/Hz^{1/2} (1 Gal = 1cm/s²)

Unités SI : 5.7 10⁻⁸m/s²/Hz^{1/2}

En relatif /g 5.8 10⁻⁹g/Hz^{1/2} 5.8 ng/Hz^{1/2}

P. Gillot et al, Metrologia 51, L15-L17 (2014)

Limites de la sensibilité : lasers

Pour garantir ce niveau de bruit de phase, il faut:

- des oscillateurs RF/MW à l'état de l'art en terme de bruit de phase (ULN Quartz, DRO)
- $_{20}$ des lasers fins spectralement, largeur de raie ~ qq kHz seulement, ECDL

Limites de la sensibilité : détection

• Etude du bruit de détection : préparation superposition P = 1/2 avec un pulse $\pi/2$ MW

Observatoire

vstêmes de Référence Temps-Espace

SYRTE

- Mesure des fluctuations de P en fonction du nombre d'atomes
- En déduire la sensibilité de phase équivalente : $\sigma_{\phi}=2\sigma_{P}/C$

Limites de la sensibilité : vibrations

Bruit de vibration : utilisation d'une plateforme d'isolation (passive)

Sensibilité :

Sans Plateforme : $2,9 \cdot 10^{-6}$ g à 1s

Avec plateforme : 7,6 \cdot 10⁻⁸ *g* à 1s

Corrélation avec les vibrations du miroir (enregistrée par un sismomètre) Déphasage induit par les vibrations $\phi_{vib}^S = k_{eff} \int_T^{-T} g_s(t) v_s(t) dt = k_{eff} K_s \int_T^{-T} g_s(t) U_s(t) dt$

Limites de la sensibilité : vibrations

⇒ Meilleure sensibilité ? Site plus calme et/ou meilleure isolation et/ou T plus grand

Aller plus loin : hybridation

Capteur Hybride : Interféromètre atomique/ capteur mécanique

- ✓ Large Bande : DC 430 Hz
- ✓ Signal haute fréquence = signal Accéléromètre Mécanique
- ✓ Etalonnage de l'AM par l'IA
- ✓ Asservissement biais de l'AM
- ✓ Mesures sans temps morts, limitées par la qualité de la corrélation

Mesures longues en continu

S. Merlet et al, Revue Française de Métrologie 36, 11-27 (2014)

Observatoire

Systèmes de Référence Temps-Espace

SYRTE

Gravimètre transportable

Mesures hors du labo : ECAG 2011

ECAG'11 KC at Walferdange (Luxembourg)

l'Observatoire SYRTE

Les comparaisons permettent la validation du bilan d'exactitude

Bilan d'exactitude :

Effect	Biais	u
	$\mu { m Gal}$	μGal
Alignments	2.4	0.5
Frequency reference	-4.6	< 0.1
RF phase shift	0.0	< 0.1
vgg	-10.3	< 0.1
Self gravity effect	-1.3	0.1
Coriolis	1.3	0.8
Wavefront abberations	0.0	4.0
LS1	0.0	< 0.1
Zeeman	0.0	< 0.1
LS2	-7.7	0.5
Detection offset	0.0	0.5
Optical power	0.0	1.0
Cloud indice	0.4	< 0.1
Cold collisions	< 0.1	< 0.1
TOTAL	-19.8	4.3

Résultats de la comparaison :

Gravimètres dans le monde

- Opérationnel Evalué
- Opérationnel En cours d'évaluation
- En cours de développement

Mesures différentielles

Intérêt : permet réjection sources de bruit en mode commun

- 2 configurations d'instruments :
- Gradiomètres

- Interféromètres simultanés avec deux nuages d'atomes et des lasers communs
- Mesure différentielle permet d'accéder à la différence d'accélération et donc au gradient de g
- Permet de s'affranchir des accélérations dues au mouvement de la plateforme
- o Instrument adapté aux mesures embarquées

- Gyromètres

- Interféromètres simultanés avec deux jets d'atomes contrapropageants
- Mesure differentielle permet d'accéder à la rotation
- o Permet de s'affranchir des accélérations

Mesures différentielles

Mesures de G

Stanford, M. Kasevich

Accéléromètre différentiel

Accélération différentielle démontrée : 10⁻¹¹ g

Incertitude statistique : 2 10^{-4} on G

Exactitude sur G : TBD

Florence, G. Tino

Incertitude statistique : $3 \ 10^{-4}$ on G Exactitude sur G : TBD, Target ~ 10^{-4}

Premier gyromètre à atomes froids

6 axes de mesure

✓ Capacité de mesurer 6 axes d'inertie dans le même appareil (rotations and accélérations)

B. Canuel et al., PRL 97, 010402 (2006)

 \checkmark Sensibilité de mesure de rotation limitée par bruit de projection quantique Au niveau de 2 10⁻⁷ rad/s @1s, avec un plancher à long terme de 10⁻⁸ rad/s compétitif avec meilleures technos

A. Gauguet, et al., Phys. Rev A 80, 063604 (2009)

 \checkmark D'autres expériences dans le monde (Hanovre en particulier)

2^e Gyromètre à atomes froids

- Première expérience 2001 → 2007
- Seconde expérience 2008 →

• Aire physique actuelle du gyromètre du SYRTE : 11 cm²

• Stabilité long terme : 1 nrad/s après 1000 s de mesure (état de l'art)

Voir Poster « Mesures en continu avec un gyromètre à atomes froids », A. Landragin

Contenu de cette présentation

- 1. Motivations, Applications
- 2. Principe de l'interférométrie atomique et des capteurs

inertiels à atomes froids

3. Quelques expériences d'interférométrie atomique au

SYRTE et ailleurs

4. Nouvelles géométries et Perspectives

De meilleures séparatrices

l'Observatoire SYRTE

Intérêt : augmenter la séparation entre les bras de l'interféromètre

Diffraction de Bragg d'ordre élevé

Intérêt et contraintes

• Augmentation du facteur d'échelle

- Augmentation de l'impact du bruit de vibration !
- Intéressant surtout pour les mesures différentielles : ex : gradiomètre
- Contraintes :
- Bonne efficacité nécessite utilisation d'atomes ultra-froids (10 nK plutôt 1 μK)
- Puissance laser plus élevée

Atomes piégés ou guidés

- Augmenter notablement le temps d'interrogation (plus de 1 s) en restant compact (volume utile ~ 50 L)
- Développer de nouveaux concepts d'interféromètres
- Mettre à profit les interactions entre atomes pour améliorer la sensibilité de l'interféromètre
- → Piège optique (dipolaire) ou piège magnétique sur une puce atomique

Interféromètres à atomes piégés

TACC : horloge à atomes piégés sur une puce (Peter Rosenbuch, 2005 →) Stabilité court terme 5.8×10^{-13}