UNIVERSITY^{OF} BIRMINGHAM

and skills

UK National Quantum Technology Hub in Sensors and Metrology

Activities of Birmingham and the Hub

Michael Holynski

Toulouse, 09/12/2015

m.holynski@bham.ac.uk

Outline

- What does cold atom quantum technology look like?
- Overview of UKNQT Hub in Sensors and Metrology
- Frequency sensing activities in Birmingham
- Atom interferometry activities in Birmingham

What does cold atom quantum technology look like?

Anatomy of a cold atom QT sensor

Offer extreme performance, but...

Anatomy of a cold atom QT sensor

• Apparatus typically fills 1-2 optical tables:

UK NATIONAL QUANTUM TECHNOLOGIES PROGRAMME And the electronics...

Anatomy of a cold atom QT sensor

Typically fill 1-2 server racks:

TECHNOLOGIES PROGRAMME • Other issues: robustness, cost...

Why should anyone be interested?

Cold atom based QT sensors:

- Already "outperform" classical counterparts
- Have huge potential
- Have disruptive benefits
- Globally, lot of good work has already been performed

However:

- To untap full potential need to reach wider markets
- Needs improved:
 Size, Weight, Power, Cost, Confidence, Usability
- Requires translation from "research" into "technology"

Overview of the UKNQT Hub in Sensors and Metrology

UK National Quantum Technology Hub

in Sensors and Metrology

UNIVERSITYOF BIRMINGHAM

UNITED KINGDOM · CHINA · MALAYSIA

Southampton

University of Strathclyde Glasgow

+ 70 industrial partners

Introduction to the Hub

- Part of the growing UK QT programme
- Investment from government and industry to enable emergence of QT market
- Create an environment in which QT can flourish: mixture of academics, suppliers and end-users
- Develop supply chain and aid commercialisation
- Demonstrate key applications to build market interest

Vision of the Hub

Goals of the Hub

 Improve technology readiness, and performance of QT sensors, to open new markets

Frequency sensing demonstrators in Birmingham

Applications of precision clocks

Network synchronisation

Time references for data encryption

Financial time-stamping

Geodesy applications

Photo: ESA/GOCE

Motivation for cold atom based clocks

Optical clocks overtaking primary standards

Improvements in Primary Frequency Standards: Optical Clocks

Current demonstrators at UoB SOC2 – Space optical clock 2 (strontium based)

- Portable housing of 970 I and 300 kg
- Mobile apparatus can be tested against other clocks
- System now deployed in PTB, Germany

- Blue MOT: 1x10⁷ atoms Red MOT: ~25% transfer at
- Red MOT: $\sim 25\%$ transfer at temperature $\sim 1\mu$ K.
- Current status: Atoms in lattice, integrating clock laser

• New UoB project: 20L Sr lattice clock, NPL making portable stable cavity

Atom interferometry demonstrators in Birmingham

Applications of precision gravity sensing

EU consortium to create a quantum technology platform to overcome the bottleneck in cold atom applications, and demonstrate it in Brussels.

- Light sources
 - Micro-integrated lasers from FBH
 - Packaging by Hamburg
 - Micro-spectroscopy unit, still in fabrication

On-board ZERODUR fibre coupler

Leibniz Ferdinand-Braun-Institut

- Light delivery
 - Free space to fibre optics
 - Reduced volume
 - Improved alignment stability

- Electronics
 - Compact control from Hannover
 - PC104 form factor
 - FPGA, flexible programming
 - Microwave chain from CNRS

Vacuum system

Low power atom chip from Nottingham

External volume 3.51 Evacuated vol. 0.91 Weight 8kg

Indium sealing

Integration and optimisation at UoB

- Atom interferometry
 - System operational in lab
 - February 2015 system visited Brussels and demonstrated atom interferometry.
 - Current specs (excluding case):

120L ext, 53kg, 240W, ~1Hz

- Atom Interferometry
 - Test-bed system operational as gravimeter, currently under optimisation
 - Initial sensitivity $\sim 10^{-5}$ g for T=1-2ms with detection after 170ms drop. Max T ~ 65 ms.
 - Currently improving vibration isolation and the magnetic shielding

1.00

Current demonstrators at UoB

GGTOP project – prototype gradiometer

- Close liaison between cold atomic physicists, civil and electrical engineers and archaeologists
- Gain better understanding of user needs and relevant environments for quantum sensors
- Includes microgravity surveying with existing technology
- Current status: launch and interferometry achieved
- Future: science and technology test bed for testing new supply chain technology and new scientific techniques

- The hub aims to bring QT devices to market, through supply chain development and demonstrators
- Enable close overlap of suppliers, academics and users
- Birmingham working in two areas of quantum sensing:
 - Strontium clocks
 - Atom interferometry for gravimetry

UoB Atom Interferometry

To engage with the Sensors and Metrology Hub: j.c.smart@bham.ac.uk

Recruiting: PhD students Post-docs