

Atom chips for inertial sensors

<u>Matthieu Dupont-Nivet</u>^{1,2}, Chris Westbrook², Sylvain Schwartz¹

¹ Thales Research & Technology, Palaiseau, France ² Laboratoire Charles Fabry, Institut d'Optique, Palaiseau, France

Outline

Introduction

- > Why cold atoms in Thales ?
- > Sensors with ultimate precision (long coherence time)

Chose of atom chips

> Compactness, on-board applications

Atomic clocks

- > Principle
- > Ramsey interferometer

Accelerometer – gravimeter

- > Principle
- > Spatial splitting

Gyroscope

Activities on development of laser source for atomic sensors

OPEN

2

Applications - Why cold atoms in Thales ?

Clocks

to a third part)

may not be reproduced, modif r written consent of Thales - ©

3

- > Navigation
- > GNSS
- > Telecom networks synchronization

Accelerometers

- > Navigation
- > Gravimeter
 - Mass detection
 - Terrain aided navigation
 - Space instruments

Gyroscopes

High performance inertial measurement units

First generation atomic gravimeter Atoms are free falling Main advantages of atom chips :

On-chip atomic accelerometer Atoms are trapped in the vicinity of a chip

- Low-energy device
- Compact
- Integration of advanced function on the same chip (microwave, optics, ...) + sensors multiplexing

On chip Bose-Einstein condensate in TRT

> $\sim 10^4$ atoms @ ~ 100 nK

a third pa

5

STIRAP transfer – on a chip

M. Dupont-Nivet, et al. Phys. Rev. A 2015, 91, 053420

OPEN

6

Atomic clock – trapped on a chip

Main advantages :

- Magnetically trappable
- Same magnetic moment
- > Weak sensitivity of the transition frequency to magnetic field fluctuations

7

Ramsey Interferometer – Atomic clock – trapped on a chip

- > Difference between two phases:
 - The oscillator one (in the microwave range)
 - Phase evolution of the atoms

> Translation of this phase difference on atomic populations of two electronic states

13

One waveguide : P. Bohi et al., Nat. Phys., 2009, 5, 592-597 Two waveguides : M. Ammar, M. Dupont-Nivet et al., PRA, 2015, 91, 053623

14

hird part)

15

hird part)

16

17

hird part)

18

hird part)

19

OPEN

20

way, in ated, in any adocument m hout the prior

21

OPEN

vay, in v ated, in any documer

22

To BEC or not to BEC ?

Bose Einstein Condensate

- > Coherent atomic source
- Strong amplitude-phase couplings due to atom-atom interactions
 - Schumm et al., Nature Physics (2005), 1, 57-62
 - Böhi et al., Nature Physics (2009), 5, 592-597

Interferometry with thermal atoms

- Less interactions than BEC
- Already used for trapped atomic clocks
 - P. Treutlein et al., PRL (2004), 92 ,203005
 - C. Deutsch et al., PRL (2010), 105, 020401
- Atomic equivalent of « white light » interferometry
 A high level of symmetry is required

Importance of symmetry for thermal atoms

Matthieu Dupont-Nivet,9th december 2015, Toulouse

24

Next step – atomic interferometer with spatial splitting

25

Next step – atomic interferometer with spatial splitting

Atom chips (III-V Lab, TRT)

Gluing on a vacuum chamber

Design of a trapped atomic accelerometer

THALES

Progress in the realization of the accelerometer (Astrid OnAcis, coll. SYRTE, TAV)

Ramsey sequence with high coherence time

> Building of a new experiment for the accelerometer in progress

27

Merci!

DGA

Agence Nationale de la Recherche

to a third part

ONACIS (Astrid) On a chip inertial sensors (2014-2017)

CATS (ANR) Integrated atomic sensors on an atom chips (2009-2014)

Former members :

- S. Schwartz
- M. Ammar
- L. Huet
- T. Laudat
- M. Casiulis
- R. Demur
- C. Guerlin
- J.-P. Pocholle

GTM :

- M. Carbonnelle
- G. Lehoucq

Syrte :

- C. Garrido-Alzar
- P. Rosenbusch

III-V Lab

- O. Patard
- R. Aubry
- S. Piotrowicz
- N. Sarazin
- E. Morvan
- S. Delage

LCFIO :

- C. Westbrook
- I. Bouchoule

LKB :

- J. Estève
- J. Reichel

DGA - MRIS :

• Ph. Adam

OPEN

28